1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
-
+
-
+
-
-
-
-
+
+
+
+
-
-
+
+
-
+
|
with Interfaces; use Interfaces;
package body Natools.Static_Maps.S_Expressions.Templates.Integers.MC is
P : constant array (0 .. 4) of Natural :=
(1, 2, 5, 6, 9);
T1 : constant array (0 .. 4) of Unsigned_8 :=
(0, 40, 7, 12, 15);
(10, 36, 34, 8, 27);
T2 : constant array (0 .. 4) of Unsigned_8 :=
(31, 48, 43, 13, 1);
(6, 49, 31, 26, 30);
G : constant array (0 .. 48) of Unsigned_8 :=
(0, 14, 0, 0, 0, 0, 0, 18, 0, 17, 10, 5, 0, 18, 0, 0, 18, 8, 0, 16, 18,
0, 0, 0, 0, 15, 23, 0, 1, 4, 13, 0, 0, 0, 0, 3, 5, 17, 0, 2, 0, 14, 6,
0, 10, 21, 0, 0, 0);
G : constant array (0 .. 50) of Unsigned_8 :=
(0, 10, 0, 6, 0, 0, 0, 0, 8, 0, 0, 4, 0, 0, 11, 0, 4, 14, 1, 0, 0, 0,
0, 0, 7, 0, 6, 0, 0, 5, 0, 0, 21, 0, 17, 0, 16, 7, 23, 0, 20, 10, 0,
0, 2, 1, 10, 2, 0, 19, 3);
function Hash (S : String) return Natural is
F : constant Natural := S'First - 1;
L : constant Natural := S'Length;
F1, F2 : Natural := 0;
J : Natural;
begin
for K in P'Range loop
exit when L < P (K);
J := Character'Pos (S (P (K) + F));
F1 := (F1 + Natural (T1 (K)) * J) mod 49;
F2 := (F2 + Natural (T2 (K)) * J) mod 49;
F1 := (F1 + Natural (T1 (K)) * J) mod 51;
F2 := (F2 + Natural (T2 (K)) * J) mod 51;
end loop;
return (Natural (G (F1)) + Natural (G (F2))) mod 24;
return (Natural (G (F1)) + Natural (G (F2))) mod 25;
end Hash;
end Natools.Static_Maps.S_Expressions.Templates.Integers.MC;
|